Spatial downscaling of land surface temperature with the multi-scale geographically weighted regression

نویسندگان

چکیده

ç”±äºŽæ˜Ÿè½½çƒ­çº¢å¤–ä¼ æ„Ÿå™¨ç ”å‘æŠ€æœ¯çš„å±€é™æ€§ï¼Œå•ä¸€ä¼ æ„Ÿå™¨å°šä¸èƒ½æä¾›å ¼å ·é«˜é¢‘æ¬¡ã€é«˜ç©ºé—´åˆ†è¾¨çŽ‡åœ°è¡¨æ¸©åº¦æ•°æ®ã€‚ååŒå ¶ä»–é¥æ„Ÿè¾ åŠ©æ•°æ®ï¼Œå¯¹ä½Žç©ºé—´åˆ†è¾¨çŽ‡ã€é«˜æ—¶é—´é¢‘æ¬¡åœ°è¡¨æ¸©åº¦äº§å“å¼€å±•é™å°ºåº¦ç ”ç©¶æˆä¸ºäº†è§£å†³è¿™ä¸€éš¾é¢˜çš„æœ‰æ•ˆé€”å¾„ã€‚ç„¶è€Œç”±äºŽçŽ°æœ‰åœ°è¡¨æ¸©åº¦é™å°ºåº¦æ–¹æ³•æœªå åˆ†è€ƒè™‘ä¸åŒåœ°è¡¨çŠ¶æ€å‚æ•°å¯¹åœ°è¡¨æ¸©åº¦ç©ºé—´åˆ†å¼‚æ ¼å±€çš„å°ºåº¦å½±å“å·®å¼‚ï¼Œé™å°ºåº¦åŽçš„åœ°è¡¨æ¸©åº¦æ•°æ®åœ¨å¼‚è´¨æ€§æ™¯è§‚åŒºåŸŸå­˜åœ¨ç²¾åº¦è¾ƒå·®å’Œç©ºé—´çº¹ç†ä¸æ¸ æ™°çš„é—®é¢˜ã€‚é‰´äºŽæ­¤ï¼Œæœ¬æ–‡ä»¥åŒ—äº¬å’Œå¼ æŽ–åœ°åŒºçš„8期MODISåœ°è¡¨æ¸©åº¦äº§å“ä¸ºä¾‹ï¼Œé€šè¿‡å¼•å ¥å¤šå°ºåº¦åœ°ç†åŠ æƒå›žå½’MGWR(Multiscale Geographically Weighted Regression)来分析归一化植被指数NDVI、数字高程模型DEMã€å¡åº¦å’Œç»çº¬åº¦å¯¹åœ°è¡¨æ¸©åº¦ç©ºé—´æ ¼å±€å½±å“çš„å°ºåº¦å·®å¼‚ï¼Œæå‡ºä¸€ç§é’ˆå¯¹MODIS地表温度产品的空间降尺度算法,并与TsHARPç®—æ³•ã€å¤šå ƒçº¿æ€§å›žå½’ç®—æ³•ã€åœ°ç†åŠ æƒå›žå½’ç®—æ³•å’Œéšæœºæ£®æž—å›žå½’ç®—æ³•è¿›è¡Œå®šé‡å¯¹æ¯”ã€‚ç»“æžœè¡¨æ˜Žï¼ŒåŸºäºŽMGWRæ¨¡åž‹çš„åœ°è¡¨æ¸©åº¦é™å°ºåº¦è½¬æ¢å‡½æ•°èƒ½å¤Ÿè‰¯å¥½åœ°æ­ç¤ºå¤šç§åœ°è¡¨çŠ¶æ€å‚æ•°ä¸Žåœ°è¡¨æ¸©åº¦é—´çš„ä¸åŒä½œç”¨å ³ç³»ï¼Œå ¶ä¸­NDVIå’Œå¡åº¦å¯¹åœ°è¡¨æ¸©åº¦åˆ†å¸ƒå ·æœ‰å ¨å±€å½±å“ï¼ŒDEM和经纬度对地表温度呈现出了局域性作用。与4种代表性方法相比,基于MGWR算法降尺度后的100 måˆ†è¾¨çŽ‡åœ°è¡¨æ¸©åº¦æ•°æ®å ·æœ‰æ›´å¥½çš„ç©ºé—´çº¹ç†ï¼Œåœ¨åŸŽé•‡å’Œæ²™æ¼ ç­‰æ¸©åº¦å¼‚è´¨æ€§æ˜Žæ˜¾åœ°åŒºä¿éšœäº†æ¸ æ™°çš„æ™¯è§‚çº¹ç†ï¼›å¦å¤–ï¼Œå¯¹äºŽæ‰€é€‰ç ”ç©¶åŒºçš„8期MODIS地表温度产品而言,利用MGWR算法降尺度后的地表温度均拥有更好的精度,在0—1 Kè¯¯å·®çº§åˆ«ä¸‹çš„é¢ç§¯å æ¯”å‡å¤§äºŽ57%ï¼Œå‡æ–¹æ ¹è¯¯å·®RMSE(Root-Mean-Square Error)均小于2.85 K,决定系数R2(coefficient of determination)均大于0.88。

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Determining Effective Factors on Land Surface Temperature of Tehran Using LANDSAT Images And Integrating Geographically Weighted Regression With Genetic Algorithm

Due to urbanization and changes in the urban thermal environment and since the land surface temperature (LST) in urban areas are a few degrees higher than in surrounding non-urbanized areas, identifying spatial factors affecting on LST in urban areas is very important. Hence, by identifying these factors, preventing this phenomenon become possible using general education, inserting rules and al...

متن کامل

Comparison of Geographically Weighted Regression and Regression Kriging to Estimate the Spatial Distribution of Aboveground Biomass of Zagros Forests

Aboveground biomass (AGB) of forests is an essential component of the global carbon cycle. Mapping above-ground biomass is important for estimating CO2 emissions, and planning and monitoring of forests and ecosystem productivity. Remote sensing provides wide observations to monitor forest coverage, the Landsat 8 mission provides valuable opportunities for quantifying the distribution of above-g...

متن کامل

Downscaling Land Surface Temperature in Complex Regions by Using Multiple Scale Factors with Adaptive Thresholds

Many downscaling algorithms have been proposed to address the issue of coarse-resolution land surface temperature (LST) derived from available satellite-borne sensors. However, few studies have focused on improving LST downscaling in urban areas with several mixed surface types. In this study, LST was downscaled by a multiple linear regression model between LST and multiple scale factors in mix...

متن کامل

Quantification of the Scale Effect in Downscaling Remotely Sensed Land Surface Temperature

Most current statistical models for downscaling the remotely sensed land surface temperature (LST) are based on the assumption of the scale-invariant LST-descriptors relationship, which is being debated and requires an in-depth examination. Additionally, research on downscaling LST to high or very high resolutions (~10 m) is still rare. Here, a simple analytical model was developed to quantify ...

متن کامل

Comparison of the Performance of Geographically Weighted Regression and Ordinary Least Squares for modeling of Sea surface temperature in Oman Sea

In Marine discussions, the study of sea surface temperature (SST) and study of its spatial relationships with other ocean parameters are of particular importance, in such a way that the accurate recognition of the SST relationships with other parameters allows the study of many ocean and atmospheric processes. Therefore, in this study, spatial relations modeling of SST with Surface Wind Speed (...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of remote sensing

سال: 2021

ISSN: ['1007-4619', '2095-9494']

DOI: https://doi.org/10.11834/jrs.20211202